R19

SIDDARTHAA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : AWP(19EC0414)

Course & Branch: B.Tech. – ECE Year & Sem: III-

B.Tech.& I-Sem. Regulation: R19

<u>UNIT –I</u> ANTENNA & RADIATION PARAMETERS

1	(a) Explain Radiation Intensity and Antenna Gain.	[L1][CO1]	[6M]
	(b) Write short notes on Radiation Pattern and Beam Efficiency.	[L1][CO1]	[6M]
2	Explain the following	[L2][CO1]	[6M]
	(a) Antenna Directivity and Effective aperture of an Antenna.	[L2][CO1]	[6M]
	(b) Antenna Noise Temperature and Radiation Resistance.		
3	Explain the following with suitable equations.	[L1][CO1]	[6M]
Ū	(a) Antenna Matching.	[21][001]	[••••]
	(b) Antenna Beam Efficiency	[L1][CO1]	[6M]
4	Develop the expression for Electric and Magnetic Field radiated by	[L3][CO1]	[12M]
	Half Wave Dipole Antenna($\frac{\lambda}{2}$) and Sketch its Field Strength pattern.		
5	A dipole having a length of 3 cm is operated at 1 GHz. The	[L3][CO1]	[12M]
	efficiency factor K=0.6. Calculate the radiation resistance, antenna		
	gain and effective aperture		
6	Derive expression for Electric and Magnetic Field radiated by	[L3][CO1]	[12M]
	Quarter Wave Monopole $(\frac{\lambda}{4})$ and Sketch its Field Strength pattern.		
7	Explain the concepts of radiation from the oscillating dipole.	[L2][CO1]	[12M]
8	(a) Calculate radiation resistance of a dipole antenna of length $\lambda/8$	[L2][CO1]	[4M]
Ū	m.(b) Define Effective Aperture and give its expression?	[L2][CO1]	[8M]
	m.(b) Define Effective Aperture and give its expression:	[][001]	[*-'-]
9	(a)An antenna has a radiation resistance of 72Ω , and a loss resistance	[L2][CO1]	[8M]
	is 8Ω if the power gain of 16.Calculate the directivity of the		
	antenna.		
	(b) Determine the length of half wave dipole at 30MHz.	[L2][CO1]	[4M]
10	(a) What is meant byFront to back ratio?	[L1][CO1]	[3M]
	(b) Define Radiation Resistance of an antenna.	[L1][CO1]	[3M]
	(c) Derive the expression for antenna efficiency.	[L3][CO1]	[3M]
	(c) What are the different types of apertures?	[L1][CO1]	[3M]
L	1		I

<u>UNIT –II</u> VHF, UHF AND MICROWAVE ANTENNAS – I

			·
1	(a) Discuss about the Folded dipole antenna and its input impedance.	[L2][CO4]	[6M]
	(b) What are parasitic elements & where they are used?	[L1][CO4]	[6M]
2	(a) Explain about construction and operation of Yagi-Uda	[L2][CO4]	[6M]
	Antenna with neat sketch.	[L2][CO4]	[6M]
	(b) Explain about the construction and operation of helical antenna.		
3	(a) Discuss about the helical antenna geometry, axial mode of	[L2][CO3]	[6M]
	radiation and its applications.	[L2][CO4]	[6M]
	(b) Discuss about the helical antenna geometry, Normal mode of		
	radiation and its applications.		
4	(a)Discuss about the horn antenna types & its characteristics.	[L2][CO4]	[6M]
	(b) Discuss the design considerations of pyramidal horn antenna.	[L2][CO4]	[6M]
5	(a) Discuss the types of horn antennas.	[L2][CO4]	[6M]
	(b) Write short notes on	[L1][CO4]	[6M]
	i) Folded dipole antenna ii) Yagi-Uda array		
6	(a) Calculate the directivity of 20 turn helix with $\alpha = 12^{0}$ and	[L3][CO4]	[6M]
	circumference equals to one wavelength.	[L1][CO4]	[6M]
	(b) Give the applications of helical antennas.		
7	(a) Discuss advantages, disadvantages and applications of Yagi-Uda	[L2][CO4]	[6M]
	antenna	[L3][CO4]	[6M]
	(b)Calculate the directivity and half power beamwidth. For a 20-		
	turns helical antenna operating at 3GHz with circumference of 10cm		
	and spacing between the turns0.3 wavelength is operating at 3GHz.		
8	(a) Write short notes on Helical antenna and its Modes.	[L1][CO3]	[6M]
	(b) Calculate the directivity of pyramidal horn antenna with an	[L3][CO4]	[6M]
	aperture. If size 12x12cm operating with 3.2cmwavelength.		
<u> </u>	(a) Write short notes on Horn antenna.	[L1][CO4]	[5M]
9	(b) Design Yagi-Uda antenna of six elements to provide a gain of	[L6][CO4]	[7M]
	12dB if the operating frequency is 200 MHz.		L J
	(a) Draw and explain the three elements of Yagi-Uda array	[L2][CO4]	[3M]
10	(b) Define Normal mode and axial mode in helical antenna?	[L1][CO3]	[3 M]
-	(c) Define Pitch angle.	[L1][CO3]	[3 M]
	(d) Define axial ratio.	[L1][CO3]	[3 M]
		r 1r,1	r1

R19

<u>UNIT – III</u>

VHF, UHF AND MICROWAVE ANTENNAS – II & ANTENNA MEASUREMENTS

r			
1.	(a) Give the advantages and limitations of micro strip antennas.	[L1][CO4]	[6M]
	(b) Explain about micro strip antennas and its types with neat	[L5][CO4]	[6M]
	diagrams.		
2.	(a)Write short notes on flat sheet& corner reflector.	[L1][CO3]	[6M]
	(b)What are the types of reflectors? Explain the features of	[L1][CO3]	[6M]
	parabolic reflectors.		[01/-]
3.	(a) Discuss the construction of rectangular patch antenna.	[L2][CO3]	[6M]
	(b)A parabolic reflector antenna with diameter 1.8 m is designed to	[L2][CO2]	[6M]
	operate at frequency of 6 GHz and illumination efficiency of		
	0.65.Calculate theFNBW and antenna gain		
4.	(a) Draw and explain the principle of parabolic reflector.	[L2][CO3]	
	(b) A parabolic dish provides a power gain of 50 dB at 10 GHz with	[L2][CO3]	[6M]
	70% efficiency. Find out i)HPBW ii) BWFN iii) Diameter		[6M]
5.	(a)Explain the effect between variation of focal length position and	[L2][CO3]	[6M]
	radiation in paraboloid.	[L2][CO3]	[6M]
	(b) Explain Cassegrain Feed system and give its advantages		
6.	(a) Explain about the Reciprocity with respect to antenna	[L5][CO3]	
	measurements.		
	(b) Explain near & far fields with respect to antenna measurements.	[L5][CO3]	[6M]
			[6M]
7.	(a) Explain sources of Error in Antenna measurement.	[L2][CO5]	
	(b) Define Radiation pattern and explain the set up for measurement	[L1][CO5]	[6M]
	of Radiation pattern of an antenna		[6M]
		FX 115 C C C C C	
8.	(a) Write short notes on Coordination system for antenna	[L1][CO3]	[6M]
	measurement.		
	(b)Explain Gain measurement by direct comparison method.	[L5][CO3]	[6M]
-	(a) Evaluin the gain measurement voice absolute method		
9.	(a) Explain the gain measurement using absolute method.	[L5][CO5]	[6M]
	(b) Explain the measurement of directivity	[L5][CO5]	[6M]
10.	(a) What is a patch antenna?	[L1][CO4]	[3M]
	(b) What are the applications of Microstrip antenna?	[L1][CO4]	[3M]
	(c) What is reflector antenna and give its significance?	[L1][CO3]	[3M]
	(d)Mention different methods of feeds of parabolic reflector	[L1][CO3]	[3M]
	antennas.		

R19

<u>UNIT – IV</u> ANTENNA ARRAYS

1.	(a) What is antenna array? Define point sources and uniform linear	[L1][CO4]	[6M]
	array.		
	(b) Write short notes on broad side and end fire arrays.	[L1][CO4]	[6M]
2.	(a) Explain n- element uniform linear array	[L5][CO4]	[8M]
	(b) Write short notes on collinear Array	[L1][CO4]	[4M]
3.	Derive the expression for far field pattern of an array of two	[L4][CO3]	[12M]
	isotropic pointsources at equal amplitude& same phase.		
4.	Explain End fire array with increase directivity and derive the	[L5][CO4]	[12M]
	directivity equation.		
5.	Derive the expression for far field pattern of an array of two	[L4][CO4]	[12M]
	isotropic point sources at equal amplitude &opposite phase.		
6.	(a)Explain pattern multiplication with appropriate examples.	[L3][CO4]	[6M]
	(b) A broad side array operating at 10cm wavelength consists of 4	[L5][CO4]	[6M]
	half wave dipole spaced 50 cm each element carries radio frequency		
	current in the same phase and magnitude 0.25A. Calculate the		
	radiated power, half power beamwidth of major lobe.		
7.		[L5][CO4]	[6M]
	(b) Show that Directivity of EFA, L>>d is $D_0=4(d/\lambda)$.	[L5][CO4]	[6M]
8.	(a)What is principle of pattern multiplication? List the advantages	[L1][CO4]	[6M]
	and disadvantages.	[L2][CO4]	[6M]
	(b) Explainabout the Binomial array.		
9.	Compare the Broad side array and End fire array.	[L5][CO4]	[12M]
10	(a) What are the different types of antenna arrays?	[L1][CO4]	[4M]
100	(b) What are the different cases of arrays of two-point sources?	[L1][CO4]	[4M]
	(c) Find the minimum spacing between the elements in a broadside	[=-][•••]	[]
	array of 10 isotropic radiators to have directivity of 7db.	[L2][CO4]	[4M]
			1

<u>UNIT – V</u> WAVE PROPAGATION

R19

1.	(a) Explain different modes of Wave Propagation.	[L2][CO5]	[6M]
	(b) Explain about refraction and reflection of EM waves.	[L2][CO5]	[6M]
2.	Draw and explain thestructure of Ionosphere with its typical electron	[L5][CO5]	[12M]
	density variation characteristics.		
3.	Explain Reflection and Refraction of sky waves by ionosphere.	[L5][CO5]	[12M]
4	Evaluin the Structure of Cround wavenrongention with next elected		[12]
4.	Explain the Structure of Ground wavepropagation with neat sketch.	[L5][CO5]	[12M]
5.	(a) Explain critical frequency and its expression.	[L5][CO5]	[6M]
	(b) Explain Maximum usable frequency with its expression.	[L5][CO5]	[6M]
6.	(a) Explain optimum working frequency and its significance.	[L5][CO5]	[6M]
	(b)Explain lowest usable high frequency (LUHF) and give its	[L5][CO6]	[6M]
	significance.		
7.	(a) Explain Virtual height and its significance.	[L5][CO6]	[6M]
	(b) Explain Skip distance and derive its expression.	L5][CO6]	[6M]
8.	(a) Explain the relation between MUF and skip distance.	[L5][CO6]	[6M]
	(b) Explain Multihop propagation.	[L5][CO6]	[6M]
9.	(a) Explain the energy loss in Ionosphere.	[L5][CO6]	[6M]
	(b) At a particular day time, the critical frequency observed in E and F	[L4][CO6]	[6M]
	layers are 2.5 MHz and 8.5 MHz respectively. Calculate the maximum		
	electron density of both the layer sin cubic meter.		
10	(a) For a flat earth assume that at 400 km reflection takes place. The	[L4][CO6]	[8M]
	maximum density of ionosphere corresponds to a refractive index of		
	0.9 at 10 MHz. Calculate range for which maximum usable frequency		
	is 10 MHz	[L4][CO6]	[4M]
	(b)Determine the maximum usable frequency for a critical frequency of		[[╼] ュッ┸]
	20 MHz and an angle of incidence of 35°		

PREPARED BY Dr J V ANAND and Mrs N CHAMANTHI